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Text S1. Subglacial Hydrology Model Governing Equations 27	
The subglacial water flow model is the two-dimensional model of the subglacial drainage system 28	
used by Banwell et al. [2016] and originally developed by Hewitt [2013]. The model routes ice 29	
sheet surface meltwater input into a continuous “sheet” connected to discrete “channels” melted 30	
upwards into the base of the ice sheet [Hewitt, 2013]. A schematic of model parameters is given 31	
in Fig. 2. Water moves between the continuous sheet of some average thickness ℎ, and flux, 𝒒𝒔 32	
(vector quantity); channels of cross-sectional area 𝑆 and discharge 𝑄; and englacial storage	Σ, to 33	
maintain a continuous hydraulic potential 𝜙 given by 34	
 35	

𝜙 =	𝜌+𝑔𝑏 + 𝑝+,         (S.1) 36	
 37	

where 𝜌+ is the water density, 𝑔 is the gravitational acceleration, 𝑏 is the basal elevation, and 𝑝+ 38	
is the water pressure. Water flux in the sheet 𝒒𝒔 is dependent on sheet thickness ℎ, through 39	
 40	

𝒒𝒔 = 	−
1234

	567
∇ϕ,      (S.2) 41	

 42	
where 𝐾; is the sheet flux coefficient controlling the sheet permeability, making 𝐾;ℎ<an effective 43	
hydraulic transmisivity.  44	
 45	

Water in the sheet is further divided into two components: a cavity sheet of thickness ℎ=>? 46	
and an elastic sheet of thickness ℎ@A. The sum of the height of the cavity and elastic sheet is equal 47	
to total sheet thickness:  ℎ= ℎ=>? + ℎ@A. The thickness of the cavity sheet represents the height of 48	
water-filled cavities [Creyts and Schoof, 2009; Schoof et al., 2012], and is a balance between the 49	
combined effects of basal ice melt and basal sliding opening cavities, and ice creep closing cavities 50	
according to  51	

 52	
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ℎ=>? 𝑁 OLR𝑁,    (S.3) 53	

 54	
where 𝜌T is the ice density, 𝑚 is the basal melting rate, 𝑈V is the basal sliding speed, ℎW is the bed 55	
roughness height scale, 𝑙W is the bed roughness length scale, 𝐴 is the creep parameter in Glen’s 56	
law, 𝑛 is the creep exponent in Glen’s law, and 𝑁 is the effective pressure (𝑁 = 𝑝T − 𝑝+). The 57	
magnitude of basal sliding speed 𝑈V (scalar quantity) is prescribed everywhere to be 100 m yr-1, 58	
which is not ideal as winter surface ice velocities in the region range from ~50–250 m yr-1 (Fig. 59	
1c) and exhibit variability in speedup during the melt season (Fig. 1e) [Joughin et al., 2013]. The 60	
fixed value of 𝑈V is not ideal, as it results in a fixed rate of subglacial cavity opening (Eq. S.3). 61	
However, as most of the water flux is accommodated by channels during the melt season, a fixed 62	
𝑈V likely has minimal effect on model output.    63	

 64	
Basal melting rate in the sheet, 𝑚, is prescribed everywhere to be 0.0059 m yr-1 based on 65	

an average geothermal heat flux, 𝐺, beneath Greenland of 0.063 W m-2 [Rogozhina et al., 2012] 66	
according to the equation 67	
 68	

𝑚 = ]
56^

,       (S.4) 69	

 70	



where 𝐿 is the latent heat of melting.  71	
 72	

The elastic sheet is included to represent the elastic uplift or “hydraulic jacking” of ice 73	
where 𝑝+ > 𝑝T. Here ℎ@A is related to effective pressure, 𝑁 = 𝑝T − 𝑝+, through 74	

 75	

ℎ@A =

−𝐶@A 𝑁 − R
M
𝑁b , 𝑁 < 0
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efLe g

Mef
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0,													𝑁 > 𝑁b

     (S.5) 76	

   77	
where 𝐶@A  is the uplift compliance and 𝑁b is a small regularizing pressure used to smooth this 78	
relationship. Based on this form, ℎ@A is zero when 𝑁 is positive (𝑝T > 𝑝+), but increases rapidly 79	
when 𝑝+ approaches or exceeds 𝑝T (𝑁 ≤ 0). A constant value for 𝐶@A of 1.02 × 10-6 m Pa-1 is set 80	
for all model runs, resulting in 1 m of uplift for 100 m of excess hydraulic head (There is a typo in 81	
the value of 𝐶@A in Banwell et al. [2016].). While this treatment of  ℎ@A allows for the injection of 82	
a large amount of meltwater into the subglacial drainage system without generating unrealistically 83	
large water pressures in the cavity layer or channels, elastic bending stress in the ice is not 84	
accounted for. For example, a non-zero ℎ@A	at one node does not necessarily cause its neighboring 85	
nodes to also become hydraulically jacked. Rather, the activation of the elastic sheet affects the 86	
pressure gradient between neighboring nodes. As stated above, the sum of the height of the cavity 87	
and elastic sheet is the total sheet thickness, which drives discharge in the sheet (Eq. S.2).  88	
 89	
 Water in the sheet is connected to discrete channels. Water discharge in the channels, 𝑄, is 90	
given by  91	
 92	

𝑄 = −𝐾=𝑆
j
k
Bl
Bm

Lng Bl
Bm
,      (S.6) 93	

 94	
where 𝐾=  is a turbulent flow coefficient for channel flow, and 𝑆 is the cross-sectional area of 95	
channel at a distance along the channel s. The growth and decay of channel cross-sectional area is 96	
a competition between the melt back and creep closure of channel walls given by 97	
 98	

Bp
BF
= 56
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𝑆 𝑁 OLR𝑁,      (S.7) 99	

 100	
where 𝑀 is the melting rate. The melting rate 𝑀, is expressed as 101	
 102	

𝑀 =
rstsu
56^

+ vC 𝒒∙∇l
56^

,                  (S.8) 103	
 104	

where 𝜆= is the incipient sheet width contributing to channel melting (the length scale over which 105	
ice melting contributes to channel formation). The first term is the channel melting rate as a 106	
function of channel discharge and hydraulic potential along the channel, and the second term 107	
should be viewed as a parameterization of how small channels emerge from a sheet flow [Hewitt 108	
et al., 2012]. The appropriate value for 𝜆= is rather uncertain and discussed in Section 4.4.1.  109	
 110	



Finally, mass conservation is expressed as a balance between the sheet, channels, and 111	
englacial storage with basal melting, channel wall melting, and surface runoff inputs 𝑅 according 112	
to 113	
 114	

Bz
BF
+ ∇ ∙ 𝒒𝒔 + Bp

BF
+ B{

B;
𝛿 𝑥= + B~

BF
= 𝑚 +𝑀𝛿 𝑥= + 𝑅,        (S.9) 115	

 116	
where Σ is englacial storage, which represents the additional water storage in connected englacial 117	
void space [Harper et al., 2010; Bartholomaus et al., 2011; Hewitt, 2013]. Englacial storage is 118	
related to water pressure through 119	
 120	

Σ = σ �6
567

+ 𝐴�
�6
567

	𝛿 𝑥� ,     (S.10) 121	

 122	
where σ is the connected void fraction of the ice and 𝐴� is the cross-sectional area of the moulin. 123	
For Eqs. S.9 and S.10, the delta functions only apply at the line positions of the channels, 𝑥=(𝑠), 124	
and the point positions of moulins, 𝑥�. 125	
 126	
 127	
Text S2. Numerical procedure  128	
The subglacial hydrology equations above are discretized onto a two-dimensional, regular 129	
rectangular mesh and solved using a finite difference approach [Hewitt, 2013]. Nodes are spaced 130	
900-m apart. The continuous variables hydraulic potential 𝜙, water sheet thickness ℎ, and water 131	
pressure 𝑝+ are discretized onto the nodes of the grid. Every node on the grid is the center of a 132	
finite volume square over which flux in the sheet, 𝒒𝒔 , is calculated. Eight potential channels 133	
connect every node to its closest surrounding eight nodes. Moulins are defined on a selection of 134	
the nodes 𝑥� chosen based on the surface runoff forcing as discussed in Section 4.3.2.4. The non-135	
linear system for the evolution of 𝑝+ , ℎ, and S described in Eqs. (S.1–S.10) is solved at each 136	
timestep using an iterative Newton method with variable time step length based on the success of 137	
the last iteration. The maximum time step the model can take is set to one day, with time steps 138	
decreasing to only a couple hours during periods of high surface runoff during the melt season.  139	
 140	
 141	
Text S3. Coherence and spectral estimation. 142	
We employ coherence estimates to compare goodness of fit between surface speeds, static 143	
variables, and model output effective pressures. Coherence is a bivariate statistic in the spectral 144	
domain that is analogous to correlation in the spatial domain [Simons et al., 2000]. Coherence 145	
measures the phase relationship between two signals, with high coherence values indicating 146	
constructive interference at wavenumbers where the two signals are correlated [for review, see 147	
Kirby, 2014]. For geophysical problems, one-dimensional coherence was first used by Forsyth 148	
[1985] to estimate flexural rigidity of the lithosphere through coherence between topography and 149	
gravity anomalies along transects across continental rift valleys [Forsyth, 1985]. The approach 150	
was expanded by Simons et al. [2000] to investigate two-dimensional lithospheric loading from 151	
the coherence between two-dimensional fields of topography and gravity anomalies [Simons et al., 152	
2000, 2003]. The coherence estimation between two two-dimensional fields yields information in 153	
the spectral, spatial, and azimuthal domains, which provides the wavelength, spatial, and 154	
directional dependence of the coherence between the two fields, respectively [Simons et al., 2003].  155	



 156	
We follow the methodology and analysis routines of Simons et al. [2000] for estimating 157	

two-dimensional coherence of stationary fields. For two stochastic fields (e.g., surface ice velocity 158	
(𝑋) and bedrock topography (𝑌)) defined on 𝒅 in the spatial domain and 𝒌 in the Fourier domain, 159	
the coherence-square function between the two fields, 𝛾��M , is the ratio between the magnitude of 160	
the fields’ cross-spectral density, 𝑆��, and the power spectral density of the individual fields, 𝑆�� 161	
and 𝑆��: 162	
 163	

𝛾��M (𝒅, 𝒌) = 	
���(𝒅,𝒌) g

���(𝒅,𝒌)���(𝒅,𝒌)
.     (S.11) 164	

 165	
Like correlation estimates, coherence-square estimates range from 0 < 𝛾��M < 1,	with 𝛾��M = 1 166	
indicating an entirely consistent phase relationship between both fields [Simons et al., 2003].  167	
 168	

Some amount of averaging in the wavenumber domain must be completed prior to 169	
calculating 𝛾��M  to prevent the ratio of periodograms expressed in Eq. S.11 from always yielding 170	
𝛾��M = 1 [Bendat and Piersol, 1993]. Following Simons et al. [2000], we use multitaper spectral 171	
estimation [Thomson, 1982] with two-dimensional Slepian tapers [Slepian, 1978] on a Cartesian 172	
plane to perform this wavenumber averaging. A weighted average of the spectra is created by 173	
multiplying the data by a set of several chosen tapers, taking the two-dimensional Fourier 174	
transform of these data-taper products, and finally taking a average in wavenumber space of the 175	
resulting power spectra [Kirby, 2014]. The result is a coherence-square estimation over the 176	
wavenumber domain, 𝛾��M 𝒌𝑿, 𝒌𝒀 . Isotropic coherence-square estimates, 𝛾M 𝒌 , are calculated 177	
by averaging over 360˚ of azimuth around logarithmically-spaced annuli in the wavenumber 178	
domain [Kirby, 2014]. A coherence-square estimation of synthetic data is provided in Figure S4 179	
to illustrate this methodology. 180	

 181	
The number and bandwidth of the chosen set of tapers determines the wavenumber 182	

resolution and variance of the coherence-square estimate [Simons et al., 2000]. A higher number 183	
of tapers and/or a wider taper bandwidth reduces the variance in the coherence-square estimate 184	
and reduces the waveband resolution [Kirby, 2014]. Most studies choose taper bandwidths to be 185	
the width of 2–5 wavenumber bands [Simons et al., 2000; Kirby, 2014]. For this study, we set the 186	
taper bandwidth, 𝑁𝑊, to 3 and the number of tapers 𝐾 to 4 for all coherence-square estimates. 187	
 188	

As the coherence-square estimate is a statistic, the variance of the isotropic coherence-189	
square estimate is calculated following the Cramer-Rao lower bound: 190	

 191	

𝜎M 𝛾M 𝒌 =
M�g n��g

g

�

�
,     (S.12) 192	

 193	
which is a measurement of variance determined by maximum likelihood estimates [Seymour and 194	
Cumming, 1994; Simons et al., 2003], where 𝐽 is the number of uncorrelated spectral estimators 195	
over which the coherence-square estimate is made [Simons et al., 2003], and Λ is the number of 196	
points in the wavenumber annuli [Simons et al., 2000]. In our two-dimensional case, 𝐽 = 𝐾M 197	
[Simons et al., 2003]. As we have set 𝐾 = 4, 𝐽 = 𝐾M = 16 uncorrelated spectral estimators. Error 198	
estimates of 𝛾M 𝒌  presented throughout the paper are two standard deviations, 2𝜎. With 𝐽 = 16, 199	



the 2𝜎	values across all possible 𝛾M 𝒌  values increases with increasing wavelength, from a 200	
minimum of 0.025 at 2 km wavelength to maximum of 0.96 at 30.9 km wavelength. 201	
 202	

Finally, the range of wavelengths we can investigate in the spectral domain is set by our 203	
data length, (𝑁�,𝑁�),	and data spacing, (𝑑𝑥, 𝑑𝑦), in the spatial domain. Our coherence-square 204	
estimates are constrained by surface velocity data from single-look complex TerraSAR-X radar 205	
images, which have 𝑑𝑥 = 𝑑𝑦 = 0.1	𝑘𝑚, 𝑁� = 309 data points, and 𝑁� = 552 data points. The 206	
longest resolvable wavelength (the Rayleigh wavelength, 𝜆¥) is set by the shorter 𝑥 dimension to 207	
be 𝜆¥� = 𝑁�𝑑𝑥 = 30.9	𝑘𝑚. The shortest resolvable wavelength in either direction is the Nyquist 208	
wavelength, 𝜆e = 2	𝑑𝑥 = 0.2	𝑘𝑚.   209	



Table S1: Values and ranges used for model parameters.  210	
 211	

𝜌+ Water density 1000 kg m-3 

𝜌T Ice density 910 kg m-3 
𝑔 Gravitational acceleration 9.8 m s-2 

𝐴 Glen’s law fluidity coefficient 6.8 × 10-24  Pa-3 s-1 

𝑛 Glen’s law exponent 3 
𝐿 Latent heat of melting 3.5 × 105  J kg-3  
𝐺 Greenland geothermal heat flux 0.063 W m-2 ** 
𝜎 Englacial void fraction [10-4, 10-3, 10-2]  

𝐾= 
Turbulent flow coefficient for channel 
flow 0.1 m s-1 Pa-1/2 

𝐾; Sheet flux coefficient (sheet permeability) [10-4, 10-3, 10-2] m-1 s-1 * 
𝜆= Sheet width contributing to melting [100; 1000; 5000] m * 
𝑐 Specific heat capacity of water 4200 J kg-1 K-1 
𝛽 Melting point pressure gradient 7.8 × 10-8 K Pa-1 

ℎW Bed roughness height scale 0.1 m  
𝑙W Bed roughness length scale 10 m  
𝑈V Basal sliding speed 100 m yr-1  
𝐶@A Uplift regularization rate 1.02	× 10-6 m Pa-1 

𝐴� Moulin cross-sectional area 10 m2 

* range of values that differs from Banwell et al. (2016) 212	
** value from Rogozhina et al. [2012] 213	
  214	



 215	
Figure S1. Moulin density and discrete surface runoff catchment delineation. (a) Moulin 216	
density versus elevation from Joughin et al. [2013] map (black), the Paakitsoq region (red) (from 217	
Andrews [2015]), and the model domain (grey).  (b) Voronoi cells calculated for discrete moulin 218	
locations xm (grey circles).  219	



 220	
Figure S2. Total runoff across the model domain in (a) 2009 and (b) 2010.  221	
 222	
 223	



 224	
Figure S3: Surface ice displacement during the rapid drainage of North Lake on 2006 DOY 225	
210 and 2009 DOY 168. (a) Uplift of NLBS GPS station in 2006 (red) and “Scooby” GPS station 226	
in 2009 (blue) during North Lake rapid drainage events. Both stations are located at 68.74˚ N 227	
49.50˚ W, roughly 1.5 km north of the lake margin. (b) Uplift of the same two stations normalized 228	
to their maximum uplift during respective North Lake rapid drainage events.  229	



 230	
Figure S4: Surface elevation, surface slope, ice sheet thickness, and driving stress 𝜏© for the 231	
TerraSAR-X region. 232	
 233	
 234	
 235	
 236	
 237	
 238	
 239	
 240	
 241	

 242	
 243	
Figure S5. Coherence-square estimation of synthetic data. 2-dimensional, 6-km wavelength 244	
sine wave along the (a) x-axis and (b) y-axis. c) Isotropically averaged power of the two fields’ 245	
power spectral densities, 𝑺𝑿𝑿 and 𝑺𝒀𝒀, plotted by wavenumber. Power is plotted normalized to the 246	
maximum value in each fields’ isotropically averaged power. Power for each field peaks at 0.16 247	
wavenumber, which is at 6-km wavelength (wavenumber = 1/wavelength). d) The coherence-248	
square estimates between fields X (a) and Y (b) in wavenumber space, 𝛾M 𝒌𝑿, 𝒌𝒀 , where the 249	
smallest wavenumbers (largest, Rayleigh wavelengths) plot in the center of plot (𝒌𝑿 = 	𝜆¥, 𝒌𝒀 =250	
𝜆¥), and the largest wavenumbers (smallest, Nyquist wavelengths) plot at the edges of the plot. 251	
The scale for the 𝒌𝑿 and 𝒌𝒀 axes are linear in wavenumber. Wavenumber axis is log scale. Zero 252	
coherence is observed along the 𝒌𝑿 and 𝒌𝒀 axes where the two fields have destructive interference. 253	
Coherence between the two fields switches to 1 at wavenumbers above 0.25 and wavelengths 254	
smaller than 4 km. e) The isotropically averaged coherence-square estimate, 𝛾M 𝒌 ± 2𝜎 , 255	
between fields a and b. The log x-axis is equivalent to the axis in panel c, but x-axis tickmarks are 256	
now labeled in wavelength.  257	



 258	
Figure S6. Region of efficient drainage area for 2009 distributed surface runoff input at 𝝈 =259	
𝟎. 𝟎𝟏 and 𝝈 = 𝟎. 𝟎𝟎𝟎𝟏. Percentage of efficient drainage area across Ks and 𝜆= parameter space 260	
for distributed surface input models on DOY (a) 174, (b) 196, and (c) 218 of 2009 with 𝜎 = 0.01. 261	
Percentage of efficient drainage area across Ks and 𝜆= parameter space for distributed surface input 262	
models on DOY (d) 174, (e) 196, and (f) 218 of 2009 with 𝜎 = 0.0001. Efficient drainage area is 263	
defined as the area within the TerraSAR-X region where N > 0 and 𝑞 > 0.001 m2 s-1. “>” mark 264	
models that channelize too quickly with an EDA > 40% on DOY 174 2009. “<” mark models that 265	
channelize too slowly with an EDA < 40% on DOY 218 2009. 266	
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 267	
Figure S7. Region of efficient drainage area for 2010 distributed surface runoff input. 268	
Percentage of efficient drainage area across Ks and 𝜆= parameter space for distributed surface input 269	
models on DOY 161, 183, and 211 of 2010. Efficient drainage area (EDA) is defined as the area 270	
within the TerraSAR-X region where N > 0 and 𝑞 > 0.001 m2 s-1. Englacial void fraction 𝜎 271	
decreases down the three rows of the figure from 𝜎 = 0.01 (a–c), to 𝜎 = 0.001 (d–f), to 𝜎 =272	
0.0001 (g–i). “<” mark models that channelize too slowly with an EDA < 40% on DOY 211 2010. 273	
 274	
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 276	
 277	
Figure S8. Region of efficient drainage area for 2009 discrete surface runoff input at 𝝈 =278	
𝟎. 𝟎𝟏 and 𝝈 = 𝟎. 𝟎𝟎𝟎𝟏. Percentage of efficient drainage area across Ks and 𝜆= parameter space 279	
for discrete surface input models on DOY (a) 174, (b) 196, and (c) 218 of 2009 with 𝜎 = 0.01. 280	
Percentage of efficient drainage area across Ks and 𝜆= parameter space for discrete surface input 281	
models on DOY (d) 174, (e) 196, and (f) 218 of 2009 with 𝜎 = 0.0001. Efficient drainage area is 282	
defined as the area within the TerraSAR-X region where N > 0 and 𝑞 > 0.001 m2 s-1. “>” mark 283	
models that channelize too quickly with an EDA > 40% on DOY 174 2009.  284	
 285	
 286	
 287	
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 288	
Figure S9. Region of efficient drainage area for 2010 discrete surface runoff input. Percentage 289	
of efficient drainage area across Ks and 𝜆= parameter space for discrete surface input models on 290	
DOY 161, 183, and 211 of 2010. Efficient drainage area (EDA) is defined as the area within the 291	
TerraSAR-X region where N > 0 and 𝑞 > 0.001	m2 s-1. Englacial void fraction 𝜎 decreases down 292	
the three rows of the figure from 𝜎 = 0.01 (a–c), to 𝜎 = 0.001 (d–f), to 𝜎 = 0.0001 (g–i). “>” 293	
mark models that channelize too quickly with an EDA > 40% on DOY 161 2010.  294	
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 295	
Figure S10. Averages of surface melt forcing, R (mm day-1) (left column), subglacial water flux, 296	
𝑞 (m2 s-1) (middle column), and effective pressure, N (MPa) (right column) at each node over the 297	
2010 melt season for a distributed surface input scenario. The date at the top of the panel 298	
corresponds to the central date for the interval over which the model outputs were determined. 299	
Parameters used in this model run are: Ks = 0.001 Pa-1 s-1, 𝜎 = 0.001, and 𝜆= = 1000	𝑚. Black 300	
rectangle is the area outline of the ice flow maps in Figs. 1c-e. Black triangle marks the location 301	
of North Lake. Yellow circles mark discharge outlet locations along the ice sheet margin. 302	



 303	
Figure S11. The same as Figure S9 but for a discrete surface input scenario in 2010. Left column 304	
is average moulin input (m3 s-1). 305	

x [ km ]



 306	
 307	
Figure S12. Differences in area-integrated model variables between the 2010 distributed 308	
(red) and discrete (blue) surface runoff input scenarios. (a) Surface runoff input integrated 309	
across the domain. (b) Average sheet height ℎ across domain, with additional lines showing the 310	
contribution from the average cavity sheet height ℎ=>?  (dashed) the and average elastic sheet 311	
height ℎ@A (dotted). (c) Average equivalent height of the channel layer 𝑆 across the domain (solid 312	
lines) and the percentage of efficient drainage area of the TerraSAR-X region (dotted lines). 313	
Efficient drainage area (EDA) is defined as the area within the TerraSAR-X region where effective 314	
pressure 𝑁 > 0 MPa and total flux 𝑞 > 0.001 m2 s-1. (d) Area-averaged effective pressures 𝑁 315	
across the domain. Vertical dashed line through all plots marks the limit of the 2009 timeseries 316	
shown in Fig. 7. 317	
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 318	
Figure S13. Correlations with bed elevation, ice sheet thickness, surface slope, and surface 319	
speeds through the 2009 melt season. Ice sheet thickness and surface slope against the winter 320	
RADARSAT and melt-season TerraSAR-X surface speed measurements. Data are linearly binned 321	
along the x- and y-axis, and the color of the bin represents the number of model grid points within 322	
that bin. Black contour surrounds data region with more than 10 model grid points. Surface speeds 323	
are averaged within each x-axis bin (circles), and are fit with a weighted linear regression (black 324	
line), where the y-value weights are 2 standard deviations (error bars). The weighted correlation 325	
coefficient r and the p-value are derived from the weighted linear regression.  326	
 327	



 328	
 329	
Figure S14. Correlations with surface speeds evolve through the 2010 melt season. Runoff, 330	
Driving stress 𝜏©, and model-derived 11-day averages of effective pressure N for a distributed and 331	
discrete input of surface forcing against the winter RADARSAT and melt-season TerraSAR-X 332	
surface speed measurements. Data are linearly binned along the x- and y-axis, and the color of the 333	
bin represents the number of model grid points within that bin. Black contour surrounds data region 334	
with more than 10 model grid points. Surface speeds are averaged within each x-axis bin (circles), 335	
and are fit with a weighted linear regression (black line), where the y-value weights are 2 standard 336	
deviations (error bars). The weighted correlation coefficient r and the p-value are derived from the 337	
weighted linear regression. Inset in effective pressure row a panels shows detail view of 50–150 338	
m yr-1 winter surface speeds and 0–0.1 MPa effective pressures. 339	
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342	
Figure S15. Correlations with bed elevation, ice sheet thickness, surface slope, and surface 343	
speeds through the 2010 melt season. Ice sheet thickness and surface slope against the winter 344	
RADARSAT and melt-season TerraSAR-X surface speed measurements. Data are linearly binned 345	
along the x- and y-axis, and the color of the bin represents the number of model grid points within 346	
that bin. Black contour surrounds data region with more than 10 model grid points. Surface speeds 347	
are averaged within each x-axis bin (circles), and are fit with a weighted linear regression (black 348	
line), where the y-value weights are 2 standard deviations (error bars). The weighted correlation 349	
coefficient r and the p-value are derived from the weighted linear regression.  350	



 351	
Figure S16. The same as Figure 4 but for a discrete surface input scenario with a pressure-352	
dependent melting point. Left column is average moulin input (m3 s-1). Parameters used in this 353	
model run are: Ks = 0.001 Pa-1 s-1, 𝜎 = 0.001, and 𝜆= = 1000	𝑚.  354	



 355	
 356	
Figure S17. Scatter plot of 11-day averages of model-derived effective pressure N, versus 11-day 357	
TerraSAR-X speed observations for individual locations within the TerraSAR-X footprint. 358	
Locations are chosen at 100-m elevation contours from 700 m a.s.l. (a) to 1100 m a.s.l. (e). Left 359	
column depicts values for 2009 (a–e), and right column depicts values for 2010 (f–i). Average 360	
model-derived effective pressures are calculated from the models shown in Figure 5 (a–e, 2009) 361	
and Figure S11 (f–i, 2010). 362	
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